Dubbo 是如何控制并发数和限流的?

点击上方“码农突围”,马上关注

这里是码农充电第一站,回复“666”,获取一份专属大礼包
真爱,请设置“星标”或点个“在看”


ExecuteLimitFilter

ExecuteLimitFilter ,在服务提供者,通过 <dubbo:service /> 的 "executes" 统一配置项开启:表示每服务的每方法最大可并行执行请求数。

ExecuteLimitFilter是通过信号量来实现的对服务端的并发数的控制。

ExecuteLimitFilter执行流程:

  1. 首先会去获得服务提供者每服务每方法最大可并行执行请求数

  2. 如果每服务每方法最大可并行执行请求数大于零,那么就基于基于服务 URL + 方法维度获取一个RpcStatus实例

  3. 通过RpcStatus实例获取一个信号量,若果获取的这个信号量调用tryAcquire返回false,则抛出异常

  4. 如果没有抛异常,那么久调用RpcStatus静态方法beginCount,给这个 URL + 方法维度开始计数

  5. 调用服务

  6. 调用结束后计数调用RpcStatus静态方法endCount,计数结束

  7. 释放信号量

ExecuteLimitFilter

@Override
public Result invoke(Invoker<?> invoker, Invocation invocation) throws RpcException {
    URL url = invoker.getUrl();
    String methodName = invocation.getMethodName();
    Semaphore executesLimit = null;
    boolean acquireResult = false;
    int max = url.getMethodParameter(methodName, Constants.EXECUTES_KEY, 0);
    if (max > 0) {
        RpcStatus count = RpcStatus.getStatus(url, invocation.getMethodName());
        //            if (count.getActive() >= max) {
        /**
             * http://manzhizhen.iteye.com/blog/2386408
             * use semaphore for concurrency control (to limit thread number)
             */
        executesLimit = count.getSemaphore(max);
        if(executesLimit != null && !(acquireResult = executesLimit.tryAcquire())) {
            throw new RpcException("Failed to invoke method " + invocation.getMethodName() + " in provider " + url + ", cause: The service using threads greater than <dubbo:service executes=\"" + max + "\" /> limited.");
        }
    }
    long begin = System.currentTimeMillis();
    boolean isSuccess = true;
    RpcStatus.beginCount(url, methodName);
    try {
        Result result = invoker.invoke(invocation);
        return result;
    } catch (Throwable t) {
        isSuccess = false;
        if (t instanceof RuntimeException) {
            throw (RuntimeException) t;
        } else {
            throw new RpcException("unexpected exception when ExecuteLimitFilter", t);
        }
    } finally {
        RpcStatus.endCount(url, methodName, System.currentTimeMillis() - begin, isSuccess);
        if(acquireResult) {
            executesLimit.release();
        }
    }
}

我们接下来看看RpcStatus这个类

private static final ConcurrentMap<String, ConcurrentMap<String, RpcStatus>> METHOD_STATISTICS = new ConcurrentHashMap<String, ConcurrentMap<String, RpcStatus>>();

public static RpcStatus getStatus(URL url, String methodName) {
    String uri = url.toIdentityString();
    ConcurrentMap<String, RpcStatus> map = METHOD_STATISTICS.get(uri);
    if (map == null) {
        METHOD_STATISTICS.putIfAbsent(uri, new ConcurrentHashMap<String, RpcStatus>());
        map = METHOD_STATISTICS.get(uri);
    }
    RpcStatus status = map.get(methodName);
    if (status == null) {
        map.putIfAbsent(methodName, new RpcStatus());
        status = map.get(methodName);
    }
    return status;
}

这个方法很简单,大概就是给RpcStatus这个类里面的静态属性METHOD_STATISTICS里面设值。外层的map是以url为key,里层的map是以方法名为key。

private volatile int executesPermits;
public Semaphore getSemaphore(int maxThreadNum) {
    if(maxThreadNum <= 0) {
        return null;
    }

    if (executesLimit == null || executesPermits != maxThreadNum) {
        synchronized (this) {
            if (executesLimit == null || executesPermits != maxThreadNum) {
                executesLimit = new Semaphore(maxThreadNum);
                executesPermits = maxThreadNum;
            }
        }
    }

    return executesLimit;
}

这个方法是获取信号量,如果这个实例里面的信号量是空的,那么就添加一个,如果不是空的就返回。

TPSLimiter

TpsLimitFilter 过滤器,用于服务提供者中,提供限流的功能。

配置方式:

通过 <dubbo:parameter key="tps" value="" /> 配置项,添加到 <dubbo:service /> 或 <dubbo:provider /> 或 <dubbo:protocol /> 中开启,例如:

dubbo:service interface="com.alibaba.dubbo.demo.DemoService" ref="demoServiceImpl" protocol="injvm" >
<dubbo:parameter key="tps" value="100" />
</dubbo:service>

通过 <dubbo:parameter key="tps.interval" value="" /> 配置项,设置 TPS 周期。

源码分析

TpsLimitFilter

private final TPSLimiter tpsLimiter = new DefaultTPSLimiter();

@Override
public Result invoke(Invoker<?> invoker, Invocation invocation) throws RpcException {

    if (!tpsLimiter.isAllowable(invoker.getUrl(), invocation)) {
        throw new RpcException(
            "Failed to invoke service " +
            invoker.getInterface().getName() +
            "." +
            invocation.getMethodName() +
            " because exceed max service tps.");
    }

    return invoker.invoke(invocation);
}

invoke方法调用了DefaultTPSLimiter的isAllowable,我们进入到isAllowable方法看一下

DefaultTPSLimiter

private final ConcurrentMap<String, StatItem> stats
    = new ConcurrentHashMap<String, StatItem>();
@Override
public boolean isAllowable(URL url, Invocation invocation) {
    //获取tps这个参数设置的大小
    int rate = url.getParameter(Constants.TPS_LIMIT_RATE_KEY, -1);
    //获取tps.interval这个参数设置的大小,默认60秒
    long interval = url.getParameter(Constants.TPS_LIMIT_INTERVAL_KEY,
                                     Constants.DEFAULT_TPS_LIMIT_INTERVAL);
    String serviceKey = url.getServiceKey();
    if (rate > 0) {
        StatItem statItem = stats.get(serviceKey);
        if (statItem == null) {
            stats.putIfAbsent(serviceKey,
                              new StatItem(serviceKey, rate, interval));
            statItem = stats.get(serviceKey);
        }
        return statItem.isAllowable();
    } else {
        StatItem statItem = stats.get(serviceKey);
        if (statItem != null) {
            stats.remove(serviceKey);
        }
    }

    return true;
}

若要限流,调用 StatItem#isAllowable(url, invocation) 方法,根据 TPS 限流规则判断是否限制此次调用。

StatItem

private long lastResetTime;

private long interval;

private AtomicInteger token;

private int rate;

public boolean isAllowable() {
    long now = System.currentTimeMillis();
    // 若到达下一个周期,恢复可用种子数,设置最后重置时间。
    if (now > lastResetTime + interval) {
        token.set(rate);// 回复可用种子数
        lastResetTime = now;// 最后重置时间
    }
    // CAS ,直到或得到一个种子,或者没有足够种子
    int value = token.get();
    boolean flag = false;
    while (value > 0 && !flag) {
        flag = token.compareAndSet(value, value - 1);
        value = token.get();
    }

    return flag;
}

关注公众号Java技术栈,在后台回复:面试,可以获取我整理的 Dubbo 系列面试题和答案。

作者:luozhiyun
出处:www.cnblogs.com/luozhiyun/p/10960593.html

- END -
最近热文•  试用期没过,因在公司上了 1024 网站...•  公司这套架构统一处理 try...catch 这么香,求求你不要再满屏写了,再发现扣绩效!•  华为正式宣布养猪,网友沸腾:支持华为自救!•  where 1=1 是什么鬼?•  Java分布式面试题集合在这里,我为大家准备了一份2021年最新最全的《Java面试题及答案V4.0》,这套电子书涵盖了诸多后端技术栈的面试题和答案,相信可以帮助大家在最短的时间内复习Java后端的大多数面试题,从而拿到自己心仪的offer。截了张图,大家可以仔细查看左边的菜单栏,覆盖的知识面真的很广,而且质量都很不错。
资料获取方法
扫描下方二维码后台回复关键词:Java核心整理明天见(。・ω・。)
已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 酷酷鲨 设计师:CSDN官方博客 返回首页